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Abstract

The detection and monitoring of invasive species at the initial stage of invasion is often critical to

control/eradication efforts. In the case of Phragmites australis, anthropogenic linear wetlands such as

roadside and agricultural ditches are believed to play a key role in invasion patterns. Accurate remote

sensing of an aquatic macrophyte in such narrow habitats, however, remains a challenge. We used

large-scale (1/8000) panchromatic and color aerial photographs to produce different distribution

maps of P. australis in a network of linear wetlands. Accuracy assessments were conducted to

compare the two classifications and sources of errors were identified using logistic regressions.

Different thresholds of stem abundance (1%, 5%, 20%, and 40%) were used in the error matrices to

determine the stem abundance at which our classification is optimized. Results show that color

images are much better in enabling the detection of P. australis. Producer’s accuracy ranges from

44% to 71% (depending on the selected threshold of stem abundance) for color images and from 16%

to 28% for panchromatic images. User’s accuracy ranges from 84% to 55% for color photographs and

from 51% to 28% for panchromatic photographs. Generally, the mapping of vigorous populations is

more accurate. The presence of Typha sp. is the main source of commission errors. Landscape context

also affects the mapping accuracy. We discuss the relevance of our results for mapping invasion

patterns in narrow linear wetlands.
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1. Introduction

In the context of plant invasion, scientists and land managers need efficient methods to

detect and appraise the severity and progression of infestations (Byers et al., 2002). In spite

of recent promising advances in the use of remote sensing tools such as hyperspectral

imagery (Underwood et al., 2003), large-scale photographs, because of their availability

for time-series analysis and relative low cost, are still largely used for mapping wetland

vegetation changes (Shay et al., 1999). Best classification accuracies using this type of

data, however, are achieved usually by categorizing vegetation according to life-forms and

not species (Valta-Hulkkonen et al., 2003). Another significant problem arises when

invasive species, especially herbaceous ones, are confined to narrow linear habitats such as

drainage ditches or riparian corridors. Linear habitats may act as dispersal corridors and

invasion foci into the land that they intersect (Bart and Hartman, 2000), but their spatial

structure makes accurate mapping of invasion patterns particularly challenging compared

to natural wetlands.

This study reports on the feasibility of mapping populations of Phragmites australis

(common reed), an emergent macrophyte, in narrow linear wetlands of Eastern Canada

using aerial photographs. We define linear wetlands as linear, highly connected features of

the landscape such as roadside, railroad, or agricultural drainage ditches that can support

permanent or transient populations of hydrophytic plant species. Common reed has been

expanding rapidly in wetlands of North-Eastern America following the introduction of a

competitive non-native strain (Saltonstall, 2002). Evidence from field survey (Catling

et al., 2003) and examination of herbarium records (Delisle et al., 2003) also show an

extensive colonization of linear anthropogenic wetlands, especially along highways and

agricultural lowlands. Although several studies have quantified common reed invasion

patterns in natural wetlands using remote sensing (Havens et al., 1997; Kotschy et al., 2000;

Krumscheid et al., 1989; Rice et al., 2000; Weisser and Parsons, 1981; Wilcox et al., 2003),

the potential of aerial photographs to map common reed in narrow linear habitats has never

been assessed to our knowledge. Errors in photo-interpretation and classification are

potentially high in these habitats and must be rigorously assessed. We therefore conducted

an accuracy assessment of maps obtained from large-scale aerial photographs, comparing

the results for panchromatic and color photographs at the same spatial resolution. The

sources of mapping errors were identified and analyzed by logistic regression.

2. Methods

2.1. Study area

We focused our investigation on periurban/agricultural landscapes with heterogeneous

land-covers, and where P. australis is growing in a complex network of linear wetlands.

The study site was chosen primarily according to the availability of large-scale aerial

photographs. The selected site is situated in Saint-Bruno-de-Montarville (458300N,
738190W) on the South shore of Montréal (Que., Canada) and encompasses an area

of 1162 ha. It is primarily composed of agricultural fields, residential zones, forests,
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old-fields, and commercial/industrial zones. Small rivers, highways, and railroads pass

through it.

2.2. Remotely sensed data sources

Preliminary examinations of color aerial photographs have shown that images acquired

in early spring (late April–early May) have the greatest potential of distinguishing P.

australis populations. At that time of the year, the vegetation is turning green again while P.

australis populations from the previous growing season appear beige, young shoots not

being visible yet. The most recent coverage available was flown in spring 2002 in color

photographs at a scale of 1:8000. To also evaluate the accuracy of panchromatic

photographs, we converted the color 2002 photographs to panchromatic format.

2.3. Construction of the photo-map

The aerial photographs were first scanned at a resolution of 600 dpi and saved in Tagged

Image File Format (TIFF). The images where then rectified with ArcGIS 9 (Environmental

SystemsResearch Institute Inc.,Redlands,CA,USA), using an averageof 16GroundControl

Points (GCPs) per photograph. This procedure is necessary before the images can be used as

geo-referenced photo-maps (Bolstad, 1992; De-Leeuw et al., 1988). GCPs were taken with

an Alto-G12TM global positioning system (GPS), in Universal Tranverse Mercator (UTM,

NAD1983), which registers geographical coordinateswith a sub-meter precision. In order to

avoid distortions occurring at the edge of each photograph, we cropped the overlapping part

of each image prior tomosaicking.We did not ortho-rectify the images because the study site

is situated on aflat terrain.After the rectification andgeo-referencingprocedure,we imported

the images in ENVI 4.0 (Research Systems Inc., Boulder, CO, USA) to mosaic them. The

resulting pixels have a corresponding ground resolution of 0.33 m. We calculated the root

mean square error (RMSE) resulting from the geo-referencing and rectification procedure,

digitizing phase, and subjectivity of polygons boundaries as described in Green and Hartley

(2000). The resulting RMSE is equivalent to 1.66 m.

Training sites were established on a small but representative portion of the mosaic in a

preliminary study. An independent observer conducted the photo-interpretation of the two

mosaics to minimize biases in the interpretation. The panchromatic mosaic contains less

spectral information than the color mosaic and was thus classified first. P. australis

polygons, all linear wetlands (roadsides ditches, railroad ditches, and agricultural ditches),

and other potential P. australis habitats (wet patches and river banks) were manually

digitized on-screen (Fig. 1).

2.4. Field sampling and accuracy assessment

We conducted an accuracy assessment of our two classifications using a stratified

random sampling scheme to allocate the samples. The stratification was made using two

categories of interest: P. australis polygons and all other habitats (linear wetlands, wet

patches, and river banks). Each point was located at least 1.66 m inside the P. australis

polygons to avoid bias associated with positional errors. Points falling in the training area
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were disregarded. A total of 347 points were sampled (P. australis = 237, potential

habitats = 110) for the color mosaic and 297 points (P. australis = 181, potential

habitats = 116) for the panchromatic mosaic. This discrepancy occurs because the

interpretation of the color mosaic resulted in more P. australis polygons being digitized.

Field sampling was performed in mid-July 2004, before full bloom. We located the

sampling points with a MobileMapperTM GPS (1 m accuracy) and a circular plot

(radius = 1 m) was used as the sampling unit. In order to characterize the digitized P.

australis polygons, we measured the height, stem abundance (%cover), and inflorescence

abundance of P. australis (%cover), as well as abundance of other plant species using semi-

quantitative cover classes.

We constructed several error matrices to compare our classifications with information

obtained by ground-truthing. Those matrices were used to compute overall accuracies,

producer’s accuracies, and user’s accuracies. Overall accuracy is the sum of the correctly

classified samples divided by the total of samples and is a measure of agreement. For a

specific category, producer’s accuracy is a measure of omission error (population present in

the field at the time of sampling but omitted on the map), whereas user’s accuracy is a

measure of commission error (population identified as P. australis on the map but not

present in the field at the time of sampling). P. australis has been reported to grow as much

as 2.6 m per growing season in linear wetlands of Southern Québec (C. Lavoie,

unpublished data). For that reason and to acknowledge the existence of a two year lag

between photo-acquisition and field sampling, we used different stem abundance

thresholds (1%, 5%, 20%, and 40%) in the accuracy assessment for a population to be

recorded as present in the field. For instance, in the case of a 5% threshold, only sampling

units that had�5% stem cover and that had been classified as P. australis population during

photo-interpretation were considered as correctly classified on our map. Using these
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thresholds allows us to identify the stem cover abundance at which our classification

accuracy is optimized. However, the way those thresholds are defined will also affect

producer’s and user’s accuracies. Proportional allocation was not used in the design of our

sampling scheme which resulted in unequal inclusion probabilities. In the perspective of

finite population sampling, we corrected the estimates of the different parameters using the

equations given in Stehman (1995) and Stehman and Czaplewski (1998). Confidence

intervals were derived from the formulas in Singh and Mangat (1996) for overall accuracy.

Stehman (1995) advocates the use of the Taylor linearization technique to calculate

confidence intervals for the producer’s and user’s accuracy. Nevertheless, this method is

cumbersome to implement because of the theoretical calculation needed to program the

derivatives (Sitter, 1992). The bootstrap percentile method (Efron, 1979) is known to give

equivalent results as the Taylor linearization technique and is thus preferred (Li and

Maddala, 1999). The confidence intervals were estimated using MatLab 7.0 (MathWorks

Inc., Natick, MA, USA) with 4000 bootstrap replications.

2.5. Data analysis

We used logistic regression to identify which variables could best predict omission errors

and commission errors. Two logistic regressions (one modeling omission errors and the

other modeling commission errors) were performed for each data set.We decided to analyze

separately the two types of errors because some variables measured on the reed population,

such as stem abundance, could not be included in the analysis of commission errors. Logistic

regression was used to test the occurrence of an omission error with respect to the following

variables: stem abundance and the presence of other dominant plant species. Only plant

species with a relative cover of more than 5% were included: Lythrum salicaria, Typha sp.,

Salix sp., Fraxinus sp., and Solidago sp. We also included one contextual variable with four

classes to characterize the landscape position of sampling points. They were: right-of-way

(highway, roads, and railroad), agricultural fields, urbanized areas (residential, commercial,

and industrial zones), and old-fields. Theses classes are related to the habitat structure and

management practices that can both influence the detection of P. australis. To facilitate

interpretation of the results, we recoded the classes of the contextual variable that were

found significant in preliminary analysis as binary variables and excluded the non-

significant ones. The height and the inflorescence abundance of a population were not

included because they were exhibiting strong collinearity with the stem abundance.

To test the occurrence of a commission error, we used the same variables as for the

occurrence of omission errors excluding the stem abundance variable because it is always

equal to 0 in the case of a commission error. To select the best model among alternative

ones, we compared the Akaike Information Criterion (AIC) (Akaike, 1973) and the

Schwarz Criterion (SC) (Schwarz, 1978) for the full model, and the ones resulting from

forward selection, backward selection, and stepwise selection. The forward selection

procedure consistently produces the smallest AIC and SC for the four analyses. Following

the principle of parsimony, we excluded from the models selected by the forward procedure

any variable that had marginal influence. Logistic regressions were performed using SAS

9.1 (SAS Institute Inc., Cary, NC, USA). Our four analyses exhibited a separation of data

points; consequently, the maximum likelihood estimates may not exist and are not reliable
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(Albert and Anderson, 1984; Santner and Duffy, 1986). To circumvent that particularity,

we used exact conditional logistic regressions to obtain the true estimates (Cox, 1970). The

Wald statistic was used to test the significance of the regression criterion. Note that for

exact conditional logistic regression, this statistic is conditional on the other parameters of

the model, including the intercept.

For our error models, we used a lower threshold stem abundance of 5% measured in the

field to record P. australis as present. This takes into account the time lag between photo-

acquisition and field sampling and can be considered conservative.

3. Results

3.1. Accuracy assessment: panchromatic images

Overall accuracy ranged from 71% (1% stem abundance) to 87% (40% stem

abundance) but no statistically significant differences (a = 0.05) were found across the

range of stem abundances for overall accuracy (Fig. 2). Omission and commission errors

are fairly high. For producer’s accuracy, we report accuracy ranging from 16% (1% stem

abundance) to 28% (40% stem abundance). A non-significant trend is observed between

the producer’s accuracy and the stem abundance threshold. User’s accuracy ranges from

51% (1% stem abundance) to 28% (40% stem abundance). The trend suggesting that user’s

accuracy decreases as the stem abundance increases is here significant. This decrease is

mostly due to the fact that 72% of P. australis polygons on the map have a stem abundance

in the field below the maximum threshold (40%). Thus, they were considered misclassified

at this particular threshold, even when common reed was present.

3.2. Accuracy assessment: color images

Overall accuracy ranged from 77% (1% stem abundance) to 88% (40% stem

abundance) but those differences are not statistically significant (Fig. 2). Moreover, when
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comparing the overall accuracy, for each stem abundance thresholds, between the

panchromatic images and the color images, no significant differences are found. Producer’s

accuracies range from 44% (1% stem abundance) to 71% (40% stem abundance).

Significant differences between the stem abundance thresholds are only found between the

40% threshold and the 1% and 5% thresholds, but not with the 20% threshold. User’s

accuracy scores range from 84% (1% stem abundance) to 55% (40% stem abundance) and

only the 40% threshold is statistically different from the other thresholds. Significant

differences are found between the classification based on the panchromatic images and the

classification based on the color images for both the producer’s and user’s accuracies at

each density thresholds.

3.3. Logistic regression

3.3.1. Panchromatic images: omission errors

The forward procedure of the logistic regression produced a non-significant model with

three variables included (stem abundance, Solidago sp., and the contextual variable). Only

the stem abundance variable was found significant and we therefore excluded the other

variables from the model. The result of the exact conditional logistic regression has shown

that the stem abundance has marginal influence (score X2 = 3.51, p = 0.0607) on the

detection of P. australis. The fitted model is:

OMISSION ERRORS ¼ INTERCEPT � 1:91� ðSTEM ABUNDANCEÞ
According to the logistic regression model, the probability ( p = log(CCP/(1 � CCP)))

of committing an omission error decreases as stem abundance increases. Confidence

intervals for the odds/ratio parameter are 0.92–60.48 (95% C.I.) which indicates that the

positive effect of this variable on the detection of a population is not significant even though

this effect is likely to occur. This model predicts accurately 53.2% of all samples.

3.3.2. Panchromatic images: commission errors

No samples being located in old-fields, the contextual variable has only three classes in

this analysis. One variable (Fraxinus sp.) originally retained by the forward selection

procedure was omitted since it had only marginal influence and was not significant. The

final model is composed of the following variables: Typha sp. (score X2 = 17.29,

p � 0.0001), agricultural fields (score X2 = 14.23, p = 0.0002), L. salicaria (score

X2 = 8.16, p = 0.0043), and Solidago sp. (score X2 = 6.97, p = 0.0083). The fitted model is:

COMMISSION ERRORS

¼ INTERCEPT þ 9:57� ðTYPHA SP:Þ þ 2:41

� ðAGRICULTURAL FIELDSÞ þ 11:65� ðLYTHRUM SALICARIAÞ

þ 10:64� ðSOLIDAGO SP:Þ

The probability of doing a commission error thus increases with the presence of other

macrophytes (mainly Typha sp., but also L. salicaria and Solidago sp.) and when the
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sample is situated in an agricultural field. This model accurately predicts 91.3% of the

samples. (No separation of data points occurred with this model.)

3.3.3. Color images: omission errors

The model retained is composed of two variables: stem abundance (score X2 = 35.41,

p � 0.0001) and old-field (score X2 = 18.41, p � 0.0005). A preliminary forward

procedure included stem abundance, contextual, and Solidago sp. but the last variable

was disregarded because it was not significant. The significant class of the categorical

variable is the one indicating that the sample is located in an old-field.

OMISSION ERRORS

¼ INTERCEPT� 5:34� ðSTEM ABUNDANCEÞ þ 3:50� ðOLD-FIELDÞ
The probability of an omission error decreases with stem abundance and increases when

the reed population is situated in an old-field. This model predicts accurately 80.3% of the

samples. Note that only 20 omissions errors were recorded for a total of 180 samples for

this analysis.

3.3.4. Color images: commission errors

The variables retained by the forward selection procedure are: Typha sp. (score

X2 = 75.51, p � 0.0001) and Fraxinus sp. (score X2 = 21.03, p = 0.0052). The model goes

as follows:

COMMISSION ERRORS

¼ INTERCEPTþ 5:99� ðTYPHA SP:Þ þ 5:36� ðFRAXINUS SP:Þ
The probability of committing a commission error increases with the abundance of both

Typha sp. and Fraxinus sp. The Wald statistic informs us that the effect of Typha sp. is

considerably more important than the effect of Fraxinus sp. This model accurately predicts

67.3% of our samples.

4. Discussion

Color photographs are far superior in enabling the detection of P. australis populations,

as indicated by the producer’s and user’s accuracy of this category compared to the

panchromatic images. The spectral resolution is therefore a determinant factor in enabling

the photo-interpreter to distinguish the populations. Given the thresholds used, our

classification is optimized for populations having a stem abundance threshold varying from

20% to 40% on color photographs. This is the threshold at which the best compromise

between omission and commission errors is achieved. The large scale (1/8000) of the color

photographs is therefore adequate to obtain accurate maps of the distribution of P. australis

in these linear habitats and provides a reference scale for other studies in similar conditions,

especially when other remote sensing approaches such as hyperspectral imagery or

airborne videography are not an option. Panchromatic photographs at the same scale
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(1/8000) do not have a sufficient spatial resolution to obtain a reliable map, but the lack of

spectral resolution could potentially be compensated by using larger scale panchromatic

photographs.

A number of factors affect the mapping accuracy of P. australis in linear wetlands. On

color images, less vigorous populations are the ones that are more often omitted. For

panchromatic images, the trend relating vigor and correct classification is onlymarginally

significant. The classification on this data set being inaccurate, errors might be distributed

randomly or other factors such as illumination or contrast could be more meaningful in

explaining the patterns observed. Regarding landscape context, populations thriving in

old-fields are generally omitted compared to other types of habitats when using color

images. This could be explained by the lack of contrast between P. australis and the dead

plants left in these habitats which are not managed. As well, P. australis tends to be

overestimated in agricultural ditches compared to other habitats when panchromatic

images are photo-interpreted, possibly because of the combined effect of poor spectral

resolution and the fact that the ditches are narrower in agricultural fields. Because of

similar spectral signatures, P. australis can be confounded with Typha sp. on both

panchromatic and color photographs, leading to commission errors. It may be possible to

discriminate between the two macrophytes particularly in the case of adjacent

populations, using training samples of Typha sp., but this remains to be assessed. On

color photographs, stems of Fraxinus sp., when present at the shrub stage, seem to provide

a spectral signature similar to that of P. australis, whereas on panchromatic images, other

herbaceous species such as Solidago sp. and L. salicaria also lead to an overestimation of

P. australis.

Like many suburban areas in North America, our study site is a very dynamic landscape

and is constantly threatened by increased urbanization. As much as 12.7% of all points

visited were not included in the analysis because of new residential constructions, road or

railroad work, etc. Adding to this effect are the management practices to control P.

australis by land-owners. P. australis is cut, sprayed with herbicide, and burned to limit its

expansion (personal observation). Those practices result in less vigorous stands or possibly

in stands that have disappeared altogether, resulting in an underestimation of the

classification accuracy.

Since the exotic strain of P. australis shows aggressive behavior, it is especially

important to be able to recognize early stages of invasion when control measures may be

more efficient. We are currently estimating the rate of progression in linear habitats and

historical photographs are often panchromatic ones (Maheu-Giroux and de Blois, in

preparation). Compared to panchromatic images, color aerial photographs at the scale

used in this study or at larger scale should provide adequate maps of P. australis

populations in linear wetlands, even at relatively low stem abundance. For these images,

accuracy level compares with those considered generally acceptable for remote sensing

data. Because color photographs tend to be more recent, photo-interpreting first recent

color photographs when available and then older panchromatic ones, when analyzing

temporal pattern, could help diminishmapping errors. In any case, because of the potential

significant errors associated with mapping macrophytes in linear habitats, we recommend

using a methodology similar to ours to provide a measure of map accuracy whenever

possible.
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